Partial squeeze film levitation modulates fingertip friction.

نویسندگان

  • Michaël Wiertlewski
  • Rebecca Fenton Friesen
  • J Edward Colgate
چکیده

When touched, a glass plate excited with ultrasonic transverse waves feels notably more slippery than it does at rest. To study this phenomenon, we use frustrated total internal reflection to image the asperities of the skin that are in intimate contact with a glass plate. We observed that the load at the interface is shared between the elastic compression of the asperities of the skin and a squeeze film of air. Stroboscopic investigation reveals that the time evolution of the interfacial gap is partially out of phase with the plate vibration. Taken together, these results suggest that the skin bounces against the vibrating plate but that the bounces are cushioned by a squeeze film of air that does not have time to escape the interfacial separation. This behavior results in dynamic levitation, in which the average number of asperities in intimate contact is reduced, thereby reducing friction. This improved understanding of the physics of friction reduction provides key guidelines for designing interfaces that can dynamically modulate friction with soft materials and biological tissues, such as human fingertips.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Magnetic Levitation for Haptic Interaction

Magnetic levitation as a means of motion and force/torque control can provide many advantages for high-fidelity haptic interaction, as compared to motorized linkage and cable actuation. Impedance-based haptic interface devices function both as force display devices, generating forces and/or torques to be felt by the user, and as input devices, sensing the motions imparted by the user to the dev...

متن کامل

Modeling near Field Acoustic Levitation by Flexural Mode including Gas Inertia

We report a combined theoretical and experimental investigation on the near field acoustic levitation (NFAL). In NFAL a disk is levitated at a height much smaller than the acoustic wavelength. The levitation force is induced by the gas squeeze film between the sound radiation surface and the levitated disk. By taking into account the flexural vibration of the sound radiation surface as well as ...

متن کامل

A Design Methodology for the Prediction of Squeeze Film Stiffness and Damping Characteristics in Hybrid Journal Bearings under Pulsatile Load Conditions

A theoretical investigation into the prediction and measurement of squeeze film stiffness and damping for double hole entry hybrid journal bearings has been undertaken together with a review of previous work to identify critical bearing parameters. The analysis used a partial differentiation of the Poiseuille and Hagen-Poiseuille flow equations to develop a mathematical model for the bearing sq...

متن کامل

Dynamic and Static Pull-in instability of electrostatically actuated nano/micro membranes under the effects of Casimir force and squeezed film damping

In the current study, the effects of Casimir force and squeeze film damping on pull-in instability and dynamic behavior of electrostatically actuated nano and micro electromechanical systems are investigated separately. Linear elastic membrane theory is used to model the static and dynamic behavior of the system for strip, annular and disk geometries. Squeeze film damping is modeled using nonli...

متن کامل

Dynamic Analysis of a Rotor Supported on Ball Bearings with Waviness and Centralizing Springs and Squeeze Film Dampers

Squeeze film dampers (SFDs) are often used in machines with high rotational speed to reduce non-periodic behavior by creating external damping. There are some structural parameters which are of great importance in designing these systems, such as oil film thickness and inner race mass of SFD. Moreover, there is a crucial parameter associated with manufacturing process, under the title of wavine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 33  شماره 

صفحات  -

تاریخ انتشار 2016